

Adapting IEEE 1584-2002Arc Flash Study Results to a Post IEEE 1584-2018 Risk Assessment

Marcelo E. Valdes, PE, IEEE Fellow

This presentation is a based on a paper presented at the IEEE 2020 Electrical Safety Workshop in March 2020.

CONSIDERATIONS FOR ADAPTING IEEE 1584-2002 ARC FLASH STUDY RESULTS TO A POST IEEE 1584-2018 RISK ASSESSMENT

Marcelo E. Valdes, PE, IEEE Fellow Marcelo.E.Valdes@IEEE.ORG, ABB

&

H. Landis Floyd, PE, IEEE Life Fellow University of Alabama at Birmingham

The method outlined in this presentation was solely created by M. E. Valdes and is not a product of the ABB company nor is it endorsed or promoted by ABB in any way. The method is not intended to replace a well performed arc flash study by qualified personnel using the latest applicable standards and generally accepted practices.

The method is solely intended to provide an estimating tool that may be useful in the process of risk analyses associated with evaluating if PPE has a high enough arc rating, under certain identified limited conditions, to exceed the incident energy that may be calculated by an Arc Flash study performed using IEEE 1584-2018 under the same identified limited conditions.

Old AF study... New AF science...

PPE was selected with an IEEE 1584-2002 AF study

PPE good enough for my task now that IEEE 1548-2018 has established a new science?

Am in conformance with the legal requirements?

- Is ignoring IEEE 1584-2018 the right thing to do from a "risk Assessment and control perspective?
- Does the worker have adequate PPE for the potential severity of an AF event based on the "new" science?

A Paradigm Shift

Assistant Secretary David Michaels letter to the OSHA staff July 19, 2010

"Ensuring that American workplaces are safe will require a paradigm shift, ... with employers going beyond simply attempting to meet OSHA standards, ... to implementing risk-based workplace injury and illness prevention programs."

Is that, really, the right question?

Is this a legal matter? Perhaps

Is it a safety matter? **Definitely**

Primarily it is a "Risk Analysis" question!

__

"Risk" in 70E...Risk Management, Needs:

- 1. Communication & consultation
- 2. Establishing risk assessment context & objectives
- 3. Risk assessment
- 4. Risk treatment
- 5. Recording/reporting risk assessment results & treatment decisions
- 6. Monitoring & reviewing risks

"Risk" in 70E...Risk Assessment, Part of risk management involving:

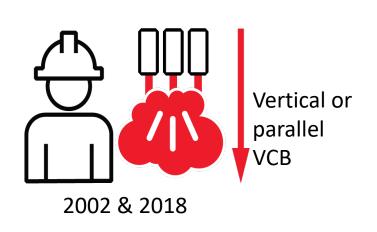
1. Identifying sources of risk

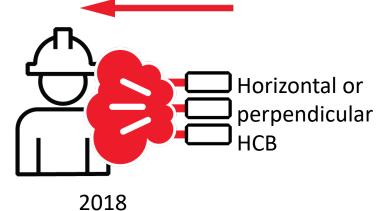
- 2. Analyzing risk sources to estimate risk level
- 3. Evaluating risk → determine if risk treatment is required

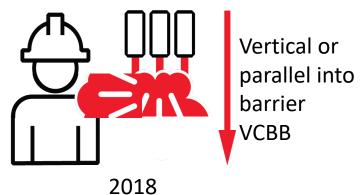
"Risk" in 70E... Risk Analysis, must be:

- 1. Integral to organizational processes & decisions
- 2. Systematic, structured, & timely
- 3. <u>Use best available information</u>
- 4. Accounts for human & cultural factors
- 5. <u>Dynamic, iterative & responsive to change</u>
- 6. Facilitates continual organization improvement

Why bother asking?


IEEE 1584 2018 is very different from 2002 version 2002 version was good, the 2018 version is better **Inputs for the calculations are different**...


Electrode orientation & arc environment were not considered before


Voltage (Voc)	208 - 600 V & 1kV - 13.8 kV	208 V - 15 kV				
Frequency	50 - 60 Hz	50 - 60 Hz				
Current @ LV (lbf)	700A - 106kA	≤ 600 V→ 500 A - 106 kA				
Current @ MV (lbf)	700A-63kA	> 600 V→ 200 A - 65 kA				
Gap (G) @ LV	10 - 40 mm	\leq 600 V \rightarrow 6.35 - 76.2 mm				
Gap (G) @ MV	13 - 152 mm	> 600 V→ 19.05 - 254 mm				
Working Distance (D)	Typically 15-36 Inches	≥ 12 inches				
System grounding	Used	lgnored				
Enclosure	Assumed per voltage & gap	variable, 49" maximum for				
Liiciosule	Assumed per vollage & gap	any 1 dimension				
Electrode	VCB, VOA (vertical only)	VCB, VOA +				
configurations	VOD, VOA (Vertical offiy)	VCBB, HCB & HOA				
	· · · · · · · · · · · · · · · · · · ·					

2002 model

Parameter

2018 model

Why bother asking?

And gap is now a variable

Is the arc pointing at the worker or not?

Is the arc constrained or free?

Is it an itty-bitty arc, or a great big long one?

Are the differences important? Do we care?

Parameter	2002 model	2018 model				
Voltage (Voc)	208 - 600 V & 1kV - 13.8 kV	208 V - 15 kV				
Frequency	50 - 60 Hz	50 - 60 Hz				
Current @ LV (lbf)	700A - 106kA	\leq 600 V \rightarrow 500 A - 106 kA				
Current @ MV (lbf)	700A-63kA	> 600 V→ 200 A - 65 kA				
Gap (G) @ LV	10 - 40 mm	≤ 600 V→ 6.35 - 76.2 mm				
Gap (G) @ MV	13 - 152 mm	> 600 V→ 19.05 - 254 mm				
Working Distance (D)	Typically 15-36 Inches	≥ 12 inches				
System grounding	Used	lgnored				
Enclosura	Assumed per voltage & gap	variable, 49" maximum for				
Liiciosure	Assumed per vollage & gap	any 1 dimension				
Electrode	VCB, VOA (vertical only)	VCB, VOA +				
configurations	VOD, VOA (Verilicai Offiy)	VCBB, HCB & HOA				

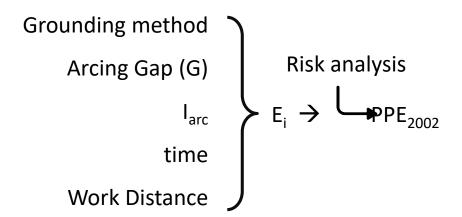
Relationships are not simple

Equations are complex, no need to go there for this analysis if one can make some assumptions!

$$I_{arc_Voc} = 10^{(k_1 + k_2 lg I_{bf} + k_3 lg G)} (k_4 I_{bf}^6 + k_5 I_{bf}^5 + k_6 I_{bf}^4 + k_7 I_{bf}^3 + k_8 I_{bf}^2 + k_9 I_{bf} + k_{10}))$$

$$E_{Voc} = \frac{12.552}{50}T \times 10^{\left(k_{1}+k_{2}lgG + \frac{k_{3}I_{arc_{Voc}}}{k_{4}I_{bf}^{7} + k_{5}I_{bf}^{6} + k_{6}I_{bf}^{5} + k_{7}I_{bf}^{4} + k_{8}I_{bf}^{3} + k_{9}I_{bf}^{2} + k_{10}I_{bf}} + k_{11}lgI_{bf} + k_{12}lgD + k_{13}lgI_{arc_{Voc}} + lg\frac{1}{CF}\right)}$$

2002 study (VCB)

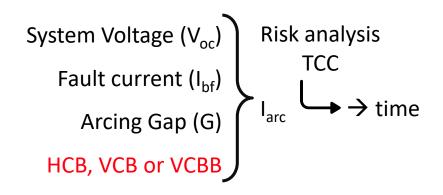

System Voltage
$$(V_{oc})$$

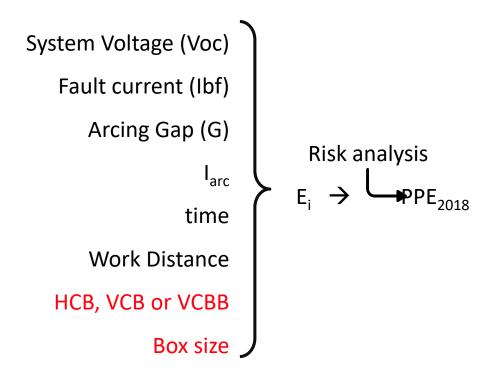
Fault current (I_{bf})

Arcing Gap (G)

Risk analysis

 TCC
 I_{arc}
 \rightarrow time


Only 1 electrode description VCB, box is always standard... There is open as well but ignoring in this situation


In 2018 electrode description became a big factor!

Grounding method no longer a factor

Gap & box size also factors but will those change?

2002 study (VCB)

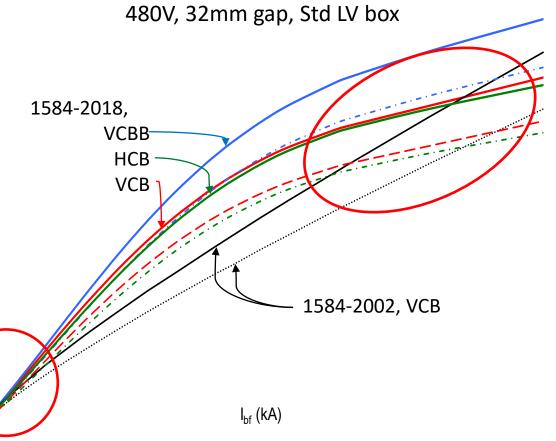
VCB, VCBB or HCB impact I_{arc} & E_i directly, & I_{arc} impacts time which also impacts E_i!

Electrode orientation is now "a" big factor!

Gap & box size also factors but will those change? Larger box will lower Ei

Gap and electrode orientation \rightarrow I_{arc}

Gap probably will not change unless it's recognized the gap needs to be larger than previously used. If a larger gap is needed it's a more complex problem.

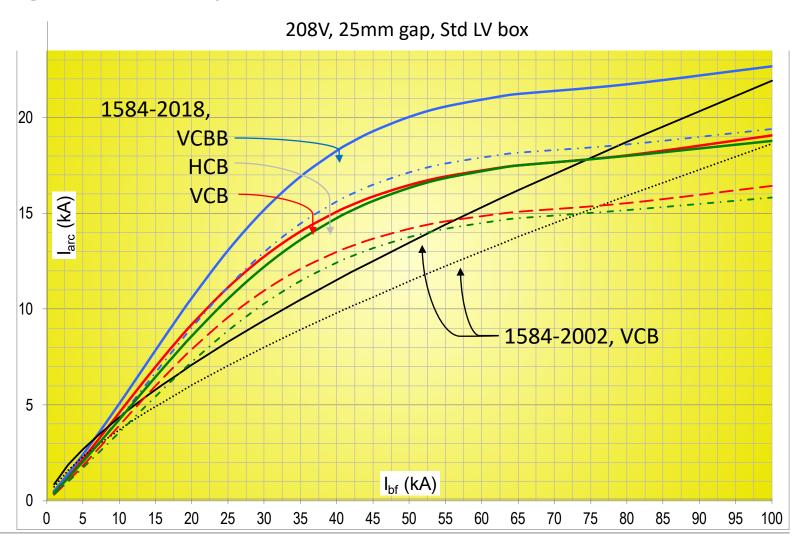

If the gap is smaller than what was used in calculation then analysis is conservative, for this purpose it can be ignored.

In a 2018 Arc Flash study, if not sure about "gap" use a larger gap...

Impact of gap on arcing current!

Over an important region the 2018 I_{arc} is > the 2002 I_{arc} !!!

Higher $I_{arc} \rightarrow equal or faster speed protection ... <math>\underbrace{\frac{9}{2}}_{\underline{s}}$ $\underline{\underline{slower}}!$

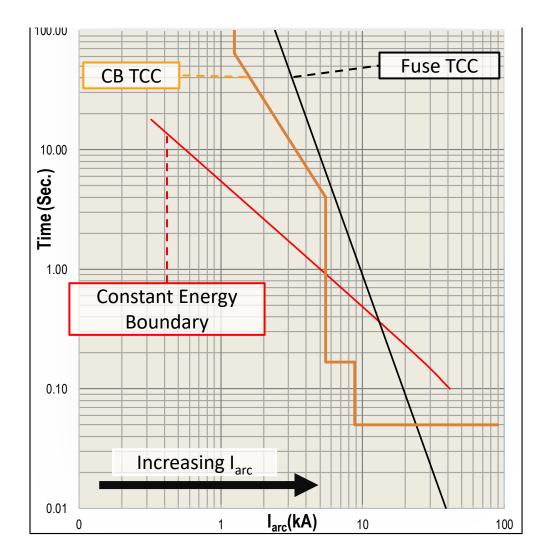

208V, similar to 480V except arcing current really flattens out

Similar relationships at 208V. Its also similar at 600V

Flattening of the arcing current... at some point more I_{bf} drives little more arcing current

What happens at 200kA I_{bf}???

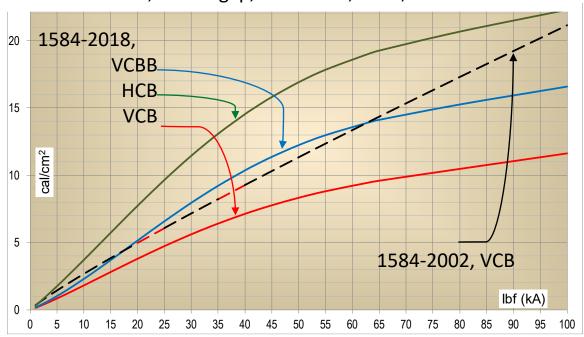
Arcing current can be much lower than traditionally calculated fault currents, specially at very high values of fault current and in lower voltage systems!

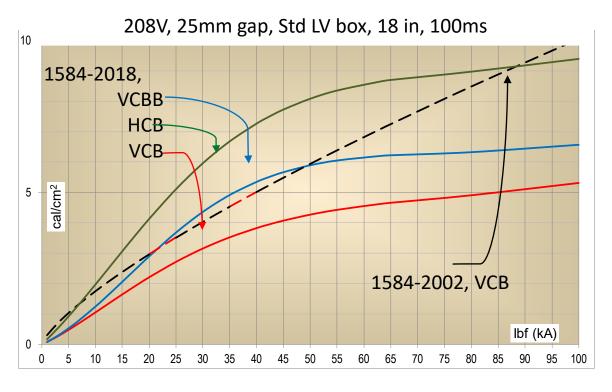

Important point

For a useful range of $I_{\rm bf}$, same $V_{\rm oc}$ & gap, for all VCB/HCB/VCBB; $I_{\rm arc}$ will be higher in a 2018 study

 Protection will be equal or faster over that range of I_{hf} Never slower!

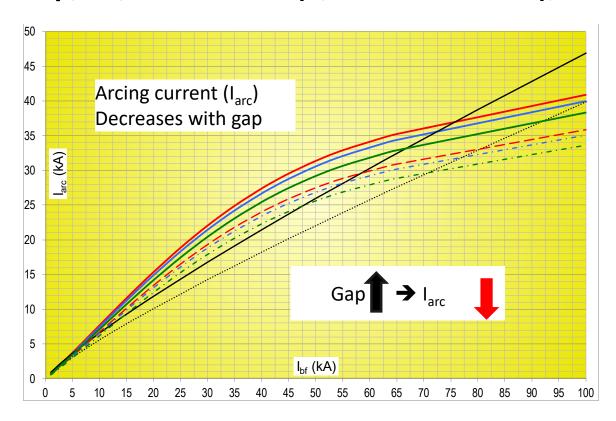
Fuse curve's & CB's TOC portion of curves are steeper than constant energy boundaries...

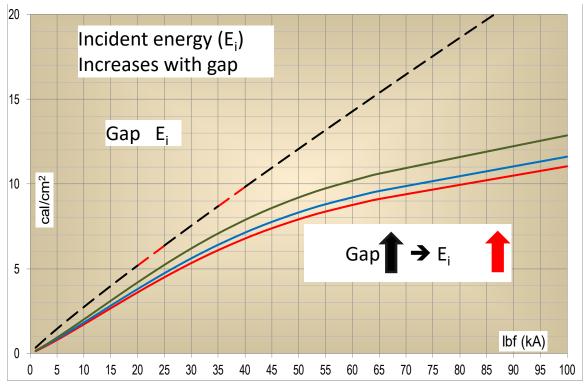

If I_{arc} increases the protection will never be slower!



E_i... not so clear

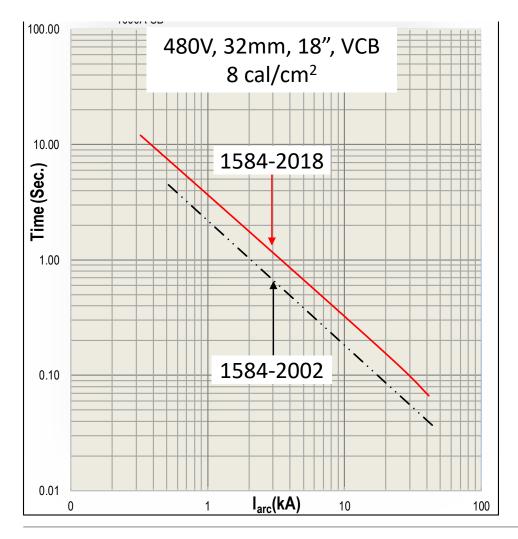
480V, 32mm gap, Std LV box, 18 in, 100ms


For VCBB & VCB, all else equal, the 2002 study may be adequate or even conservative over a wide range of situations, but not always


HCB, on the other hand... but there are more variables in the new equations

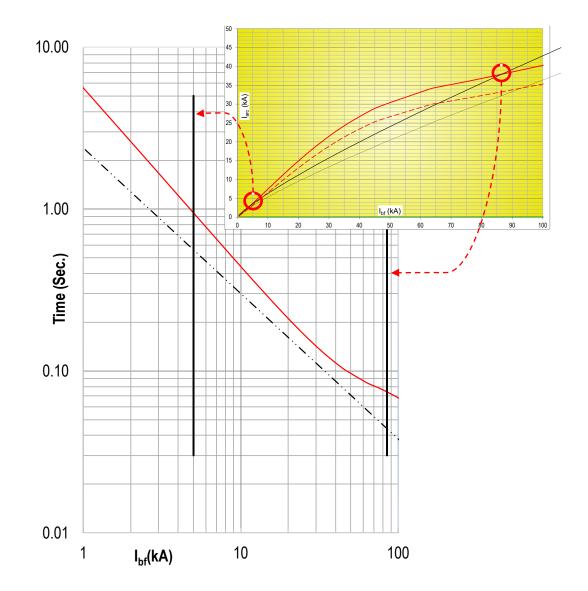
But above assumes time is equal! If the 2002 vs 2018 time are different....

Gap, 25, 32 & 51mm (1, 1.25 & 2 inches), VCB, 480V



Lower I_{arc} is harder to detect, may cause protection to slow Regardless the decreasing I_{arc} , E_i increases because the arc is longer Effects may be small, but they may add up...specially if protection slows

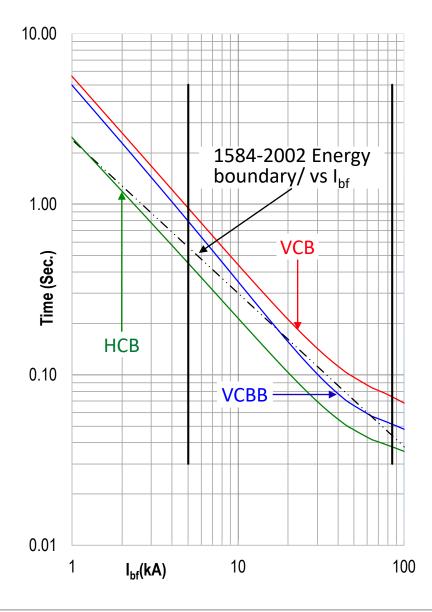
Constant Energy Boundary, A tool



- For any one value of I_{arc}, curve shows the time needed to produce a specific value of E_i.
- Notice, for same target E_i , 2018 allows more time at the same value of I_{arc}
- But... the AF study may tell you I_{arc} for a 2018 based AF study, we do not know what it would be for a 2018 calculation
- But we know that for a certain range of I_{bF} the 2018 I_{arc} will be higher... hence the OCPD will be equal speed or faster!

Transpose to I_{bf}

- Since we do not need OCPD clearing time we do not need actual I_{arc}.
- Plotting at I_{bf} allows the two lines to be compared to each other.
- The vertical lines bound the range of I_{bf} where we know the 2018 I_{arc} will be larger that the 2002 I_{arc} .
- If the gap, working distance & voltage are the same & I_{bf} is the same between 5kA to 85kA... the E_i will be less for VCB with the same OCPD.



VCB, VCBB & HCB

- 2018 VCB is always easier... but for VCBB it depends on the exact $I_{\rm bf}$
- And for HCB it is always worse!!
- But this assumes the E_i target performance is the same for 2002 & 2018 studies...

Chances are that the 2002 PPE decision selected a PPE higher than the actual exposure because PPE choices are limited by choice & availability... there is a margin

One more consideration

12-MCC-01	0.480 12-G2		Other	32	16.213	9.449	0.033	0	0.033	16.3	18	1	#0	
12-MCC-02	0.480 12-A4		Other	32	16.693	*8.229	0.048	0	0.048	18.5	18	1.3	#0	
12-MCC-02	0.480 12-MCC-0	2-MAIN	Other	32	16.693	9.682	0.027	0	0.027	. 14	18	0.8	#0	
12-MCC-03	0.480 12-B4		Other	32	16.707	*8.235	0.048	0	0.048	18.5	18	1.2	#0	
12-MCC-04	0.480 12-B3		Other	32	16.169	9.428	0.31	0	0.31	73.1	18	9.5	#3	
13-PDL-MCC-01	0.480 13-PDL-M	ICC-01-D6	Other	32	11.957	7.332	0.019	0	0.019	9.3	18	0.5	#0	
13-PDL-MCC-01	0.480 13-PDL-M	ICC-01E11	Other	32	12.107	7.409	0.022	0	0.022	10.3	18	0.5	#0	
13-PDL-MCC-01	0.480 14B-C2		Other	32	10.208	6.427	0.49	0	0.49	85	18	11.8	#3	
13-PDL-MCC-02	0.480 13-PDL-M	ICC-02-C8	Other	32	11.126	6.905	0.022	0	0.022	9.9	18	0.5	#0	
13-PDL-MCC-02	0.480 14B-C1		Other	32	10.535	*5.609	2	0	2	187.9	18	38	#4	
14-MCC-01	0.480 14B-C3		Other	32	11.201	*5.902	1.684	0	1.684	164	18	31.1	#4	

- Generally a PPE level selected or recommended is > than the Ei calculated.
- Table above: $9.5 \rightarrow 25$, $11.8 \rightarrow 25$, $38 \rightarrow 40$, $31.1 \rightarrow 40$
- Can the margin absorb the extra energy the new exposure may cause?

1 DANGER

Arc-Flash and Shock Hazards

11'-11.7" - Arc-Flash Protection Boundary
15.6 cal/cm² Incident Energy Flash Hazard at 36 inches

CLASS 3
Arc-Flash Hazard
Risk Category

Appropriate PPE Required for both Arc-Flash and Shock Hazards:

Safety Glasses/Goggles, Hard Hat, Flash Suit Hood, Hearing Protection, Class 2 Voltage Gloves, Leather Gloves/Protectors, Voltage Rated Tools, Leather Shoes, Cotton Underwear, FR Long Sleeve Shirt, FR Long Pants, FR Coverall

13800 Vac - Shock Hazard with covers/doors open

5' - 0" - Limited Approach Boundary

2' - 2" - Restricted Approach Boundary

0' - 7" - Prohibited Approach Boundary

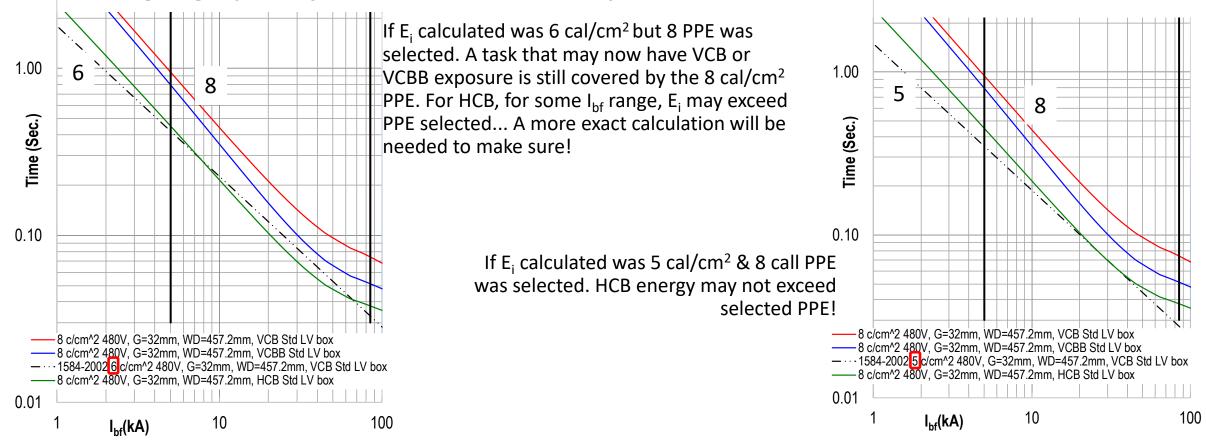
Shock Hazard

7/2007

0126

1000-INCOM-BUS2

BUS 2-CUBICLE 103: T3 FEEDER BREAKER FRONT DOOR

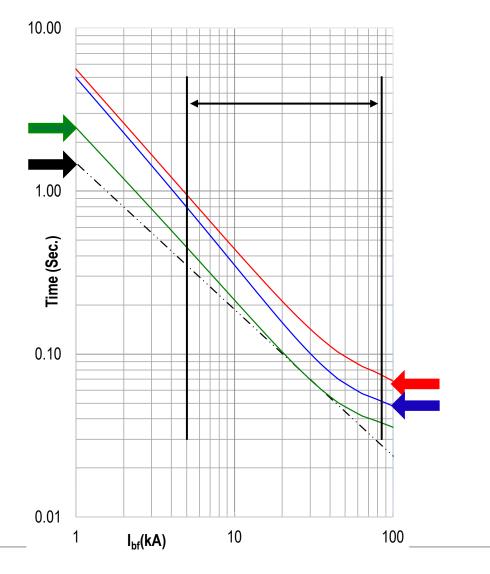

15.6 calories calculated; 25 calorie PPE identified...

An almost 10 calorie margin, enough to accommodate the new calculations?

Improperly identified as HRC here!

With the right graph any situation can be analyzed

Without I_{arc} or understanding the OCPD the method allows determination if a new electrode exposure presents unacceptable risk using only the 2002 based study!.... But one needs a chart to represent the specific scenario!


Table format for multiple scenario

l _{bf} ran	ge where 1584-2	018 minimum I _a is > 1	1584-2002 E _i calculated must be <= identified level for PPE selection to be sufficient 1584-2018 calculated E _i over the range of I _{bf} identified											
v _« HRG	Gap G in mm	IEEE 1584-2018	I _{a-1584-2018} ≥	l _{a-1584-2002}	1584	4-2018 8 0	cal/cm²	1584	I-2018 25	cal/cm²	1584-2018 40 cal/cm ²			
		Electrode Config.	I _{bf} from	- to (kA)	VCB	VCBB	НСВ	VCB	VCBB	НСВ	VCB	VCBB	НСВ	
	13	VCB/HCB ¹	8	<u>68</u> 3	12		6	37		20	59		32	
	13	VCBB	6	88		8			27			42		
	25	VCB/HCB	11	72	9		5	40		17	50		27	
208 V	25	VCBB	7	106 ²		6			23			36		
208 V	32	VCB/HCB	<u>12</u> 3	78	9		5	29		15	47		24	
	32	VCBB	7	106		6			21			34		
	40	VCB/HCB	<u>12</u>	94	8		4	25		13	41		21	
		VCBB	7	106		6			18			29		
	13	VCB/HCB	4	<u>69</u>	14		7	43		22	69		36	
		VCBB	2	106		9			30			49		
	25	VCB/HCB	5	77	11		5	35		17	56		28	
480 V		VCBB	3	106		8			25			39		
480 V	32	VCB/HCB	5	84	10		5	32		15	51		25	
	32	VCBB	2	106		7	· — ·	•	22			35		
	40	VCB/HCB	<u>6</u>	100	8		4	27		13	43		21	
	40	VCBB	2	106		6			19			30		
	13	VCB/HCB	6	<u>47</u>	17		8	52		27	84		43	
	13	VCBB	3	61		12			38			60		
	25	VCB/HCB	<u>7</u>	56	13		6	42		21	67		33	
600 V	25	VCBB	3	77		9			30			47		
900 V	22	VCB/HCB	<u>7</u>	64	12		6	38		18	60		29	
	32	VCBB	3	90		8			27			42		
	40	VCB/HCB	6	74	10		5	33		15	52		25	
	40	VCBB	3	106		7			23			36		

^{≥2.7}kV 1584-2018 always yields lower I_{arc}

¹VCB & HCB have similar I_a so they are grouped in this table.

----- 8 c/cm^2 480V, G=32mm, WD=457.2mm, HCB Std LV box

²I_a not calculated for > 106 kA I_{bf.}

³Bolded numbers are the highest minimum & lowest maximum in the voltage range

$\rm I_{bf}$ range where 1584-2018 minimum $\rm I_a$ is > 1584-2002 minimum $\rm I_a$					1584-2002 E _i calculated must be <= identified level for PPE selection to be sufficient 1584-2018 calculated E _i over the range of I _{bf} identified									
V _{oc}	Gap G in	Electrode	I _{a-1584-2018} ≥ I _{a-1584-2002}		1584	-2018 8 ca	al/cm²	1584-	2018 25 c	al/cm²	1584-2018 40 cal/cm ²			
HRG		Config.	I _{bf} from	- to (kA)	VCB	VCBB	нсв	VCB	VCBB	НСВ	VCB	VCBB	нсв	
	13	VCB/HCB1	8	<u>68</u> ³	12		6	37		20	59		32	
	13	VCBB	6	88		8			27			42		
	25	VCB/HCB	11	72	9		5	40		17	50		27	
200.14	25	VCBB	7	106²		6			23			36		
208 V	22	VCB/HCB	<u>12</u> 3	78	9		5	29		15	47		24	
	32	VCBB	7	106		6			21			34		
	40	VCB/HCB	<u>12</u>	94	8		4	25		13	41		21	
		VCBB	7	106		6			18			29		
	13	VCB/HCB	4	<u>69</u>	14		7	43		22	69		36	
		VCBB	2	106		9			30			49		
	25	VCB/HCB	5	77	11		5	35		17	56		28	
400.14		VCBB	3	106		8			25			39		
480 V	22	VCB/HCB	5	84	10		5	32		15	51		25	
	32	VCBB	2	106		7			22			35		
		VCB/HCB	<u>6</u>	100	8		4	27		13	43		21	
	40	VCBB	2	106		6			19			30		
	10	VCB/HCB	6	<u>47</u>	17		8	52		27	84		43	
	13	VCBB	3	61		12			38			60		
		VCB/HCB	<u>7</u>	56	13		6	42		21	67		33	
	25	VCBB	3	77		9			30			47		
600 V	22	VCB/HCB	<u>7</u>	64	12		6	38		18	60		29	
	32	VCBB	3	90		8			27			42		
		VCB/HCB	6	74	10		5	33		15	52		25	
	40	VCBB	3	106		7			23			36		

≥2.7kV 1584-2018 always yields lower larc

Notes: ¹VCB & HCB have similar I_a so they are grouped in this table.

²I_a not calculated for > 106 kA I_{bf}

³Bolded numbers are the highest minimum & lowest maximum in the voltage range

HRG/ Floating Systems

Calories/cm² from 2002 study for HRG or ungrounded system. If PPE is = or higher rated than the arc rating identified at column top for identified conditions, then PPE should have higher arc rating than what a 2018 study would predict for the same identified conditions. Which include the same arcing gap, 18 inches working distance, standard box and electrode configuration of VCB in 2002 AF study and as identified in the column heading for the 2018 AF study.

Solidly Grounded Systems

Calories/cm² from 2002 study for solidly grounded system. If PPE is = or > rated than the arc rating identified at column top for identified conditions then PPE should have higher arc rating than what a 2018 study would predict for the same identified conditions. Which include the same arcing gap, 18 inches working distance, standard box & electrode configuration of VCB in 2002 AF study & as identified in the column heading for the 2018 AF study.

Notes

≥2.7kV 1584-2018 always yields lower I_a

- 1) VCB & HCB have similar I_a so they are grouped in this table.
- 2) I_a not calculated for > 106 kA I_{hf} .
- 3) Bolded numbers are the highest minimum & lowest maximum in the voltage range

I _{bf} range where 1584-2018 minimum I _a is > 1584-2002 minimum I _a						1584-2002 E _i calculated must be <= identified level for PPE selection to be sufficient for 1584-2018 calculated E _i over the range of I _{bf} identified								
	C 22 C	IEEE 1584-2018	1	₁₈ ≥ I _{a-1584-2002}	1	584-201	8	1	584-201	8	1	1584-201	8	
V _{oc} (Solidly Ga Grounded) in		Electrode Config.			8	3 cal/cm	2	2	5 cal/cm		4	0 cal/cm	12	
	111 1111111	Liectione Comig.	I _{bf} fro	m - to (kA)	VCB	VCBB	HCB	VCB	VCBB	HCB	VCB	VCBB	HCB	
	13	VCB/HCB (1)	8	<u>68</u> (3)	9		5	29		15	45		25	
	13	VCBB	6	88		6			20			33		
>	25	VCB/HCB	11	72	8		4	24		13	39		21	
120	23	VCBB	7	106 (2)		5.5			18			28		
208/120 V	32	VCB/HCB	12 (3)	78	7		3.5	23		12	36		19	
	32	VCBB	7	106		5			16			26		
	40	VCB/HCB	<u>12</u>	94	6		3	19		10	31		16	
	40	VCBB	7	106		4.5			14			23		
	13	VCB/HCB	4	<u>69</u>	10		5.5	33		17	53		28	
		VCBB	2	106		7			23			37		
>	25	VCB/HCB	5	77	8		4	27		13	43		21	
77		VCBB	3	106		6			19			30		
480/277 V	32	VCB/HCB	5	84	8		3.5	24		12	39		19	
48	32	VCBB	2	106		5.5			17			27		
	40	VCB/HCB	<u>6</u>	100	6.5		3	21		10	33		16	
	40	VCBB	2	106		4.5			15			23		
	13	VCB/HCB	6	<u>47</u>	13		6.5	40		21	64		33	
	13	VCBB	3	61		9			29			47		
>	25	VCB/HCB	<u>7</u>	56	10		5	32		16	51		25	
347	25	VCBB	3	77		7			23			37		
600/347 V	32	VCB/HCB	<u>7</u>	64	9		4.5	29		14	46		22	
)9	32	VCBB	3	90		6.5			21			33		
	40	VCB/HCB	6	74	8		3.5	25		12	40		19	
	40	VCBB	3	106		5.5			18			28		

Summary

- At LV, creating plots is not difficult for the Excel & math inclined... that is what interns are for! ©
- Electrical system analysis software may be able to help, consult with your favorite vendor. Most software will plot constant E_i curve against I_{arc} but not I_{bf}
- Risk management principles would seem to dictate that old PPE selections should be questioned based on the new IEEE guide. Specially if HCB electrodes may be found.
- Doing the entire arc flash study over again by the time the task needs execution may be unreasonable
- Assessment with a few known variables is possible! Existing PPE practices may be good enough, sometimes, prioritize where more attention is needed!

Marcelo E. Valdes

marcelo.valdes@us.abb.com

#